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LETTER TO THE EDITOR 

Path integral formalism for Osp (112) coherent states* 

Xiao-Ming Liut$ and Shun-Jin Wang$ 
t Institute of High Energy Physics, Academia Sinica. Po Box 918(4). Beijing 100039, 
People’s Republic of China! 
t Department of Modem Physics, Lanzhou University, People’s Republic of China 

Received 18 May 1994 

Abstract. A path-integral formulation in the representation of coherent states for the supergroup 
Osp(112) is introduced. An expression for the transition amplitude connecting two Osp(112) 
mherent states is constructed and the corresponding canonical equations of motion derived. A 
set of genenlired Poisson brackets is introduced. 

Both path integrals [l] and coherent states [2,3] have played major roles in the study 
of quantum-mechanical systems, particularly for establishing the correspondence between 
classical and quantum physics. Coherent states for arbitrary Lie groups were constructed by 
Perelomov [4] and Gilmore [5] and generalized to the case of supergoups by others [6-81. 
The use of coherent states to provide an alternative method of obtaining the phasespace 
path integral and, hence, Hamilton’s equations of motion, was pioneered by Klauder and 
others [9]. This technique has been extended to include a formulation in terms of coherent 
states for SU(2) [lo], SU(1,l) [ll] and the n-dimensional Euclidean group [12]. The 
coherent-state path-integral formalism has also found its application in the theoretical study 
of Berry’s geometrical phase [ 131. In the past few years, there have been hints of physically 
realized supersymmetry in nuclear [141, atomic [lS] and many-body quantum systems [16]. 
Recently, Schmitt and Mufti [I71 presented the path-integral formalism of coherent states 
for the non-compact supergroup Usp(112, R), which contains Sp(2 ,  R) as a subgroup. 

In this letter, we wish to generalize the previous path-integral formalism of SU(2)  
coherent states studied in [IO] to the supergroup Osp(112) [18], which contains SU(2)  as 
a subgroup. We first recall the Usp(112) and its relevant irreducible representation, then 
construct the associated coherent states. Later, we present the path-integral formulation 
of the transition amplitude between two Usp(112) coherent states and derive the classical 
equations of motion for the system. 

The superalgebra Osp(112) contains three even (bosonic) generators Q3, Q i  of SU(2)  
and two odd (fermionic) generators V* with (anti)commutation relations 

[e+, Q - I =  2Q3 [Q3, Q i l =  *Q* 
[Q3, V d  = +tfv* [QA, V*l= 0 VJ = V* 

IV*,V*)=f iQ* Iv+,V,I=-$Q3. (1) 
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There is a graded anti-involution 

(Qa)' = Q, Q3* = Q3 (V+)' = &(-l)'VT E = O .  1 

(XY)' = (-l)P(X)P'Y)y'x' (X*)* = (-1)P'X)X (2) 

where p(X)  = 0, 1 is the parity of a homogeneous element XcOsp(112). We shall use 
E = 0 later on. 

An irreducible representation of this algebra contains a doublet of representations 
Iq,q,q3) and ]q,q - ;,q3) of the even part SU(2) with highest weights q and q - f .  
respectively. Note that the quantum number q = 1, 1 ,  $, . . .. The q representation is 
defined as follows 

Q31q,q7q3) =4314,4,43) 
Q31q.4-1.q3)=q31q14-1,43) I 

QaIq.q,q3) = + 1)lq,qpqs*1) 

QaIq,q -1,43)=J(4-1/2Tq3)(q+1/2*q3)lq,q-f.q3~ll) 

The q representation is a grade-star representation with respect to a suitable positive-definite 
scalar product on the representation space. 

For a doublet of Grassmann variables 8 and 8, there exists a graded anti-involution *, 
defined by 

e* = 6 @ = -6 ~1~ (e@)* = (-l)p(@p(%&* = 08 (4) 

where p ( 8 )  = p(8) = 1.  
Now, we construct the Osp(112) coherent states as 

lo? 8) = U ( f >  8)lqr q> -4) 
= - eCQ+-t'Q-e@V + - 9 q , q ,  -4) 

- dQi Io~(l+uu')Q~ -a'Q- b'V+-8V- - e  e e lqvq, -4 )  (5)  

with 
8 

2 2 
o =tan -e-'+ (0 < 8 Q x ,  o < @ < 2n). (6)  e = -  - i+ 

In the sense of grade-star representations, the U ( f ,  e)  is a unitary operator, i.e., UU' = 
U*U = 1 .  In (5). the 14, q ,  -4) is one of the lowest-weight state vectors. By calculation, 
we can get 



~- 
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N = l(1 +aa*)[l + i&91)-4. (8) 

The overlap between two Osp(112) coherent states can be expressed as 

We can find the measure of integration and decomposition of unity for the Osp(112) coherent 
states as follows 

3-1 

n=O 
+ 19,g - f ,  -9+ 4 + n ) ( q , q  - f . - g +  f +nl = I  

with 

Here, we have used the definitions of integration over Grassmann variables 

/d60(1 ,6 ,0 )=0  /de'dSSS = 1. (12) 

It is interesting to note that the Osp(112) coherent states so constructed are 'closest to 
classical' in the sense of PereJamov [4]. 

Consider a Hamiltonian H, which is constructed from the generators of the supergroup. 
The propagator from the coherent state at time tz to the coherent state at time fl is given by 

In principle, we should use a timeordered exponential to allow for the Hamiltonian W i g  
time dependent, however, the modifications needed are straightforward and are omitted here. 
As usual, we divide ( t l  - t2) into n equal time intervals E = (tl - f z ) / n  and take the limit 
n+m 

Inserting the completeness relation (IO) into each of the equal time intervals, we can rewrite 
T as 
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Here, the endpoints are t. = t l  and to = t2. First, the term in the curly bracket in (15) 
can be replaced by the exponential of the expectation value of the Hamiltonian in the limit 
E --f 0. Next, by calculation, the product term n(ak,B~lor~-l,B~-~) is expressed as 

where the dot denotes time derivative and Auk = f f k  -a'-!, Aek = 0, - 4 - 1 ;  the terms 
containing second order in A have been neglected. 

We obtain the formal expression for the  ans sit ion amplitude 

where the 'Lagrangian' L is given by 

which can be rewritten as 

with the aid of 

To arrive at the classical limit, we consider the case S >> f i .  The dominant contribution 
to the transition amplitude then comes from the path where the variation of the action 
vanishes. Setting 6s = 0, we get the Euler-Lagrange equations for the system 
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Substituting expression (19) for the Lagrangian into (23) and (24). we derive the 
equations of motion for the system 

: I  e = -[+01(i + o~u*){u*, HI,$ - aO1*(i +0101*)[01, ~ 1 ~ ~ 7  + 218, HI,]. (28) 
ft¶ 

Here, we have introduced the Poisson brackets for complex and Grassmann variables 

c 
Note that 8/86 and a/&9 are left and right derivative, respectively. 

Finally, we wish to point out that all the above results are identical to those in [IO], 
i.e., in the case of SU(2)  as 8.8-tO. This is just what we require. 

In this letter, we have presented a path-integral formalism for the supergroup Osp(112). 
The resulting equations of motion contain two Poisson bracke-ne for the complex 
variable 01 and one for the Grassmann variable 0. The form of the equations of motion 
follows from the fact that the coherent states were constructed from a supergroup. The 
existence of the boson (fermion) Poisson bracket in the equations of motion for the bosonic 
(fermionic) variables is a direct consequence of the supergroup structure. 

In our next work, we will apply our obtained results to a physical system possessing 
#sp( 112) supersymmetry. 

We would like to thank Professor Z Q Ma for helpful discussions and the anonymous referee 
for suggestions leading to the improvement of the letter. 
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