Path integral formalism for $\operatorname{Osp}(1 \bmod 2)$ coherent states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 L697
(http://iopscience.iop.org/0305-4470/27/18/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:40

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Path integral formalism for $\operatorname{Osp}(\mathbf{1} \mid \mathbf{2})$ coherent states*

Xiao-Ming Liu $\ddagger \ddagger$ and Shun-Jin Wang \ddagger
\dagger Institute of High Energy Physics, Academia Sinica, PO Box 918(4), Beijing 100039, People's Republic of China§
\ddagger Department of Modern Physics, Lanzhou University, People's Republic of China

Received 18 May 1994

Abstract

A path-integral formulation in the representation of coherent states for the supergroup $O_{s p}(1 \mid 2)$ is introduced. An expression for the transition amplitude connecting two $O_{s p}(\mathbf{1} \mid 2)$ coherent states is constructed and the corresponding canonical equations of motion derived. A set of generalized Poisson brackets is introduced.

Both path integrals [1] and coherent states [2,3] have played major roles in the study of quantum-mechanical systems, particularly for establishing the correspondence between classical and quantum physics. Coherent states for arbitrary Lie groups were constructed by Perelomov [4] and Gilmore [5] and generalized to the case of supergroups by others [6-8]. The use of coherent states to provide an alternative method of obtaining the phase-space path integral and, hence, Hamilton's equations of motion, was pioneered by Klauder and others [9]. This technique has been extended to include a formulation in terms of coherent states for $S U(2)$ [10], $S U(1,1)$ [11] and the n-dimensional Euclidean group [12]. The coherent-state path-integral formalism has also found its application in the theoretical study of Berry's geometrical phase [13]. In the past few years, there have been hints of physically realized supersymmetry in nuclear [14], atomic [15] and many-body quantum systems [16]. Recently, Schmitt and Mufti [17] presented the path-integral formalism of coherent states for the non-compact supergroup $\operatorname{Osp}(1 \mid 2, R)$, which contains $S p(2, R)$ as a subgroup.

In this letter, we wish to generalize the previous path-integral formalism of $S U(2)$ coherent states studied in [10] to the supergroup $\operatorname{Osp}(1 \mid 2)$ [18], which contains $S U(2)$ as a subgroup. We first recall the $\operatorname{Osp}(1 \mid 2)$ and its relevant irreducible representation, then construct the associated coherent states. Later, we present the path-integral formulation of the transition amplitude between two $\operatorname{Osp}(1 \mid 2)$ coherent states and derive the classical equations of motion for the system.

The superalgebra $\operatorname{Osp}(1 \mid 2)$ contains three even (bosonic) generators $Q_{3}, Q_{ \pm}$of $S U(2)$ and two odd (fermionic) generators $V_{ \pm}$with (anti)commutation relations

$$
\begin{array}{ll}
{\left[Q_{3}, Q_{ \pm}\right]= \pm Q_{ \pm}} & {\left[Q_{+}, Q_{-}\right]=2 Q_{3}} \\
{\left[Q_{3}, V_{ \pm}\right]= \pm \frac{1}{2} V_{ \pm}} & {\left[Q_{ \pm}, V_{ \pm}\right]=0 \quad\left[Q_{ \pm}, V_{\mp}\right]=V_{ \pm}} \\
\left\{V_{ \pm}, V_{ \pm}\right\}= \pm \frac{1}{2} Q_{ \pm} & \left\{V_{ \pm}, V_{\mp}\right\}=-\frac{1}{2} Q_{3} . \tag{1}
\end{array}
$$

[^0]There is a graded anti-involution *

$$
\begin{array}{ll}
\left(Q_{ \pm}\right)^{\star}=Q_{\mp} \quad Q_{3}^{\star}=Q_{3} & \left(V_{ \pm}\right)^{\star}= \pm(-1)^{\varepsilon} V_{\mp} \quad \varepsilon=0,1 \\
(X Y)^{\star}=(-1)^{p(X) p(Y)} Y^{\star} X^{\star} & \left(X^{\star}\right)^{\star}=(-1)^{p(X)} X \tag{2}
\end{array}
$$

where $p(X)=0,1$ is the parity of a homogeneous element $X \in \operatorname{Osp}(1 \mid 2)$. We shall use $\varepsilon=0$ later on.

An irreducible representation of this algebra contains a doublet of representations $\left|q, q, q_{3}\right\rangle$ and $\left|q, q-\frac{1}{2}, q_{3}\right\rangle$ of the even part $S U(2)$ with highest weights q and $q-\frac{1}{2}$, respectively. Note that the quantum number $q=\frac{1}{2}, 1, \frac{3}{2}, \ldots$. The q representation is defined as follows

$$
\begin{align*}
& Q_{3}\left|q, q, q_{3}\right\rangle=q_{3}\left|q, q, q_{3}\right\rangle \\
& Q_{3}\left|q, q-\frac{1}{2}, q_{3}\right\rangle=q_{3}\left|q, q-\frac{1}{2}, q_{3}\right\rangle \\
& Q_{ \pm}\left|q, q, q_{3}\right\rangle=\sqrt{\left(q \mp q_{3}\right)\left(q \pm q_{3}+1\right)}\left|q, q, q_{3} \pm 1\right\rangle \\
& Q_{ \pm}\left|q, q-\frac{1}{2}, q_{3}\right\rangle=\sqrt{\left(q-1 / 2 \mp q_{3}\right)\left(q+1 / 2 \pm q_{3}\right)}\left|q, q-\frac{1}{2}, q_{3} \pm 1\right\rangle \\
& V_{ \pm}\left|q, q, q_{3}\right\rangle=\mp \frac{1}{2} \sqrt{q \mp q_{3}}\left|q, q-\frac{1}{2}, q_{3} \pm \frac{1}{2}\right\rangle \\
& V_{ \pm}\left|q, q-\frac{1}{2}, q_{3}\right\rangle=-\frac{1}{2} \sqrt{q+1 / 2 \pm q_{3}}\left|q, q, q_{3} \pm \frac{1}{2}\right\rangle \tag{3}
\end{align*}
$$

The q representation is a grade-star representation with respect to a suitable positive-definite scalar product on the representation space.

For a doublet of Grassmann variables θ and $\bar{\theta}$, there exists a graded anti-involution *, defined by

$$
\begin{equation*}
\theta^{\star}=\bar{\theta} \quad \bar{\theta}^{\star}=-\theta \quad-\quad(\theta \bar{\theta})^{\star}=(-1)^{p(\theta) p(\bar{\theta})} \bar{\theta}^{\star} \theta^{\star}=\theta \bar{\theta} \tag{4}
\end{equation*}
$$

where $p(\theta)=p(\bar{\theta})=1$.
Now, we construct the $\operatorname{Osp}(1 \mid 2)$ coherent states as

$$
\begin{align*}
|\alpha, \theta\rangle & =U(\xi, \theta) \mid q, q,-q) \\
& \equiv \mathrm{e}^{\xi Q_{+}-\xi \cdot Q_{-} Q_{-}} \mathrm{e}^{\theta V_{+}-\bar{\theta} V_{-}}|q, q,-q\rangle \\
& =\mathrm{e}^{\alpha Q_{+}} \mathrm{e}^{\log \left(1+\alpha \alpha^{*}\right) Q_{3}} \mathrm{e}^{-\alpha^{*} Q_{-}} \mathrm{e}^{\theta V_{+}-\vec{\theta} V_{-}}|q, q,-q\rangle \tag{5}
\end{align*}
$$

with

$$
\begin{equation*}
\xi=\frac{\theta}{2} \mathrm{e}^{-\mathrm{i} \phi} \quad \alpha=\tan \frac{\theta}{2} \mathrm{e}^{-\mathrm{i} \phi} \quad(0 \leqslant \theta \leqslant \pi, 0 \leqslant \phi \leqslant 2 \pi) . \tag{6}
\end{equation*}
$$

In the sense of grade-star representations, the $U(\xi, \theta)$ is a unitary operator, i.e., $U U^{\star}=$ $U^{\star} U=1$. In (5), the $\{q, q,-q\rangle$ is one of the lowest-weight state vectors. By calculation, we can get

$$
\begin{align*}
|\alpha, \theta\rangle=N \sum_{n=0}^{2 q} & {\left[\frac{(2 q)!}{n!(2 q-n)!}\right]^{1 / 2} \alpha^{n}|q, q,-q+n\rangle } \\
& -N\left(1+\alpha \alpha^{*}\right)^{1 / 2} \frac{(2 q)^{1 / 2}}{2} \theta \sum_{n=0}^{2 q-1}\left[\frac{(2 q-1)!}{n!(2 q-1-n)!}\right]^{1 / 2} \alpha^{n}\left|q, q-\frac{1}{2},-q+\frac{1}{2}+n\right\rangle \tag{7}
\end{align*}
$$

with

$$
\begin{equation*}
N=\left\{\left(1+\alpha \alpha^{*}\right)\left[1+\frac{1}{4} \bar{\theta} \theta\right]\right\}^{-q} \tag{8}
\end{equation*}
$$

The overlap between two $\operatorname{Osp}(1 \mid 2)$ coherent states can be expressed as

$$
\begin{equation*}
\left\langle\alpha_{1}, \theta_{1} \mid \alpha_{2}, \theta_{2}\right\rangle=N_{1} N_{2}\left\{\left(1+\alpha_{1}^{*} \alpha_{2}\right)\left[1+\frac{\left(1+\alpha_{1} \alpha_{1}^{*}\right)^{1 / 2}\left(1+\alpha_{2} \alpha_{2}^{*}\right)^{1 / 2}}{4\left(1+\alpha_{1}^{*} \alpha_{2}\right)} \bar{\theta}_{1} \theta_{2}\right]\right\}^{2 q} \tag{9}
\end{equation*}
$$

We can find the measure of integration and decomposition of unity for the $\operatorname{Osp}(1 \mid 2)$ coherent states as follows

$$
\begin{align*}
& \int \mathrm{d} \mu(\alpha, \theta)|\alpha, \theta\rangle\langle\alpha, \theta|=\sum_{n=0}^{2 q}|q, q,-q+n\rangle\langle q, q,-q+n| \\
&+\sum_{n=0}^{2 q-1}\left|q, q-\frac{1}{2},-q+\frac{1}{2}+n\right\rangle\left\langle q, q-\frac{1}{2},-q+\frac{1}{2}+n\right|=I \tag{10}
\end{align*}
$$

with

$$
\begin{equation*}
\mathrm{d} \mu(\alpha, \theta)=\frac{4}{\pi} \mathrm{~d} \bar{\theta} \mathrm{~d} \theta \mathrm{~d}^{2} \alpha\left\{\frac{1}{\left(1+\alpha \alpha^{*}\right)^{2}}\left[1-\frac{1}{4} \bar{\theta} \theta\right]\right\} . \tag{11}
\end{equation*}
$$

Here, we have used the definitions of integration over Grassmann variables

$$
\begin{equation*}
\int \mathrm{d} \bar{\theta} \theta(1, \bar{\theta}, \theta)=0 \quad \int \mathrm{~d} \bar{\theta} \mathrm{~d} \theta \theta \bar{\theta}=1 \tag{12}
\end{equation*}
$$

It is interesting to note that the $\operatorname{Osp}(1 \mid 2)$ coherent states so constructed are 'closest to classical' in the sense of Perelomov [4].

Consider a Hamiltonian \widehat{H}, which is constructed from the generators of the supergroup. The propagator from the coherent state at time t_{2} to the coherent state at time t_{1} is given by

$$
\begin{equation*}
T\left(\alpha_{1}, \theta_{1}, t_{1} ; \alpha_{2}, \theta_{2}, t_{2}\right)=\left\langle\alpha_{1}, \theta_{1}\right| \exp \left[-\frac{\mathrm{i}}{\hbar} \widehat{H}\left(t_{1}-t_{2}\right)\right]\left|\alpha_{2}, \theta_{2}\right\rangle \tag{13}
\end{equation*}
$$

In principle, we should use a time-ordered exponential to allow for the Hamiltonian being time dependent, however, the modifications needed are straightforward and are omitted here. As usual, we divide ($t_{1}-t_{2}$) into n equal time intervals $\epsilon=\left(t_{1}-t_{2}\right) / n$ and take the limit $n \rightarrow \infty$

$$
\begin{equation*}
T=\lim _{n \rightarrow \infty}\left\langle\alpha_{1}, \theta_{1}\right|\left[1-\frac{\mathrm{i}}{\hbar} \widehat{H} \epsilon\right]^{n}\left|\alpha_{2}, \theta_{2}\right\rangle . \tag{14}
\end{equation*}
$$

Inserting the completeness relation (10) into each of the equal time intervals, we can rewrite T as

$$
\begin{align*}
T=\lim _{n \rightarrow \infty} \int & \cdots \int \prod_{k} \mathrm{~d} \mu\left(\alpha_{k}, \theta_{k}\right) \prod_{k}\left\langle\alpha_{k}, \theta_{k}\right|\left[1-\frac{\mathrm{i}}{\hbar} \widehat{H} \epsilon\right]\left|\alpha_{k-1}, \theta_{k-1}\right\rangle \\
= & \lim _{n \rightarrow \infty} \int \cdots \int \prod_{k} \mathrm{~d} \mu\left(\alpha_{k}, \theta_{k}\right) \prod_{k}\left\langle\alpha_{k}, \theta_{k} \mid \alpha_{k-1}, \theta_{k-1}\right\rangle \\
& \times \prod_{k}\left\{1-\frac{\mathrm{i} \epsilon}{\hbar} \frac{\left\langle\alpha_{k}, \theta_{k}\right| \widehat{H}\left|\alpha_{k-1}, \theta_{k-1}\right\rangle}{\left\langle\alpha_{k}, \theta_{k} \mid \alpha_{k-1}, \theta_{k-1}\right\rangle}\right\} \tag{15}
\end{align*}
$$

Here, the endpoints are $t_{n}=t_{1}$ and $t_{0}=t_{2}$. First, the term in the curly bracket in (15) can be replaced by the exponential of the expectation value of the Hamiltonian in the limit $\epsilon \rightarrow 0$. Next, by calculation, the product term $\Pi\left\langle\left\langle\alpha_{k}, \theta_{k} \mid \alpha_{k-1}, \theta_{k-1}\right\rangle\right.$ is expressed as

$$
\begin{align*}
& \prod_{k}\left\langle\alpha_{k}, \theta_{k} \mid \alpha_{k-1}, \theta_{k-1}\right\rangle=\exp \sum_{k} \epsilon \frac{1}{\epsilon} \log \left\langle\alpha_{k}, \theta_{k} \mid \alpha_{k-1}, \theta_{k-1}\right\rangle \\
& = \\
& \quad \exp \sum_{k} \epsilon\left\{q \left[\frac{1}{1+\left|\alpha_{k}\right|^{2}}\left(\alpha_{k} \frac{\Delta \alpha_{k}^{*}}{\epsilon}-\alpha_{k}^{*} \frac{\Delta \alpha_{k}}{\epsilon}\right)\left(1-\frac{1}{4} \bar{\theta}_{k} \theta_{k}\right)\right.\right. \\
& \left.\left.\quad+\frac{1}{4}\left(\frac{\Delta \bar{\theta}_{k}}{\epsilon} \theta_{k}-\overline{\theta_{k}} \frac{\Delta \theta_{k}}{\epsilon}\right)\right]+\mathrm{O}\left(\Delta^{2}\right)\right\} \tag{16}\\
& \quad \rightarrow \exp \int_{t_{2}}^{t_{1}} q\left[\frac{\alpha \dot{\alpha}^{*}-\alpha^{*} \dot{\alpha}}{1+|\alpha|^{2}}+\frac{1}{4}(\dot{\bar{\theta} \theta}-\bar{\theta} \dot{\theta})\right]\left[1-\frac{1}{4} \bar{\theta} \theta\right] \mathrm{d} t
\end{align*}
$$

where the dot denotes time derivative and $\Delta \alpha_{k}=\alpha_{k}-\alpha_{k-1}, \Delta \theta_{k}=\theta_{k}-\theta_{k-1}$; the terms containing second order in Δ have been neglected.

We obtain the formal expression for the transition amplitude

$$
\begin{align*}
& T=\int D \mu[\alpha(t), \theta(t)] \exp \left(\frac{\mathrm{i}}{\hbar} S\right) \tag{17}\\
& S=\int_{t_{2}}^{t_{1}} L\left(\alpha(t), \alpha^{*}(t), \dot{\alpha}(t), \dot{\alpha}^{*}(t), \theta(t), \bar{\theta}(t), \dot{\theta}(t), \dot{\bar{\theta}}(t)\right) \mathrm{d} t \tag{18}
\end{align*}
$$

where the 'Lagrangian' L is given by

$$
\begin{align*}
& L=-i \hbar q\left[\frac{\alpha \dot{\alpha}^{*}-\alpha^{*} \dot{\alpha}}{1+|\alpha|^{2}}+\frac{1}{4}(\dot{\bar{\theta} \theta} \theta-\bar{\theta} \dot{\theta})\right]\left[1-\frac{1}{4} \bar{\theta} \theta\right]-H \tag{19}\\
& H=H\left(\alpha, \alpha^{*}, \bar{\theta} \theta\right)=\langle\alpha, \dot{\theta}| \widehat{H}|\alpha, \theta\rangle \tag{20}
\end{align*}
$$

which can be rewritten as

$$
\begin{equation*}
L=\langle\alpha, \theta|\left(i \hbar \frac{\partial}{\partial t}-\widehat{H}\right)|\alpha, \theta\rangle \tag{21}
\end{equation*}
$$

with the aid of

$$
\begin{align*}
\langle\alpha, \theta| \frac{\partial}{\partial t}|\alpha, \theta\rangle & =\langle\alpha, \theta|\left(\dot{\alpha} \frac{\partial}{\partial \alpha}+\dot{\alpha}^{*} \frac{\partial}{\partial \alpha^{*}}+\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\theta} \frac{\partial}{\partial \bar{\theta}}\right)|\alpha, \theta\rangle \\
& =-q\left[\frac{\alpha \dot{\alpha}^{*}-\alpha^{*} \dot{\alpha}}{1+|\alpha|^{2}}+\frac{1}{4}(\dot{\bar{\theta}} \theta-\bar{\theta} \dot{\theta})\right]\left[1-\frac{1}{4} \bar{\theta} \theta\right] . \tag{22}
\end{align*}
$$

To arrive at the classical limit, we consider the case $S \gg \hbar$. The dominant contribution to the transition amplitude then comes from the path where the variation of the action vanishes. Setting $\delta S=0$, we get the Euler-Lagrange equations for the system

$$
\begin{array}{ll}
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\alpha}}-\frac{\partial L}{\partial \alpha}=0 & \frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\alpha}^{*}}-\frac{\partial L}{\partial \alpha^{*}}=0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}=0 & \frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \bar{\theta}}=0 . \tag{24}
\end{array}
$$

Substituting expression (19) for the Lagrangian into (23) and (24), we derive the equations of motion for the system
$\dot{\alpha}=\frac{\mathrm{i}}{2 \hbar q}\left(1+\frac{1}{4} \bar{\theta} \theta\right)\left(1+\alpha \alpha^{*}\right)^{2}\{\alpha, H\}_{\mathrm{B}}$
$\dot{\alpha}^{*}=\frac{\mathbf{i}}{2 \hbar q}\left(1+\frac{1}{4} \tilde{\theta} \theta\right)\left(1+\alpha \alpha^{*}\right)^{2}\left\{\alpha^{*}, H\right\}_{B}$
$\dot{\theta}=\frac{i}{\hbar q}\left[\frac{1}{4} \alpha^{*}\left(1+\alpha \alpha^{*}\right)\{\alpha, H\}_{\mathrm{B}} \theta-\frac{1}{4} \alpha\left(1+\alpha \alpha^{*}\right)\left\{\alpha^{*}, H\right\}_{\mathrm{B}} \theta-2\{\theta, H\}_{\mathrm{F}}\right]$
$\dot{\tilde{\theta}}=\frac{\mathrm{i}}{\hbar q}\left[\frac{1}{4} \alpha\left(1+\alpha \alpha^{*}\right)\left\{\alpha^{*}, H\right\}_{\mathrm{B}} \bar{\theta}-\frac{1}{4} \alpha^{*}\left(1+\alpha \alpha^{*}\right)\{\alpha, H\}_{\mathrm{B}} \bar{\theta}+2\{\bar{\theta}, H\}_{\mathrm{F}}\right]$.
Here, we have introduced the Poisson brackets for complex and Grassmann variables

$$
\begin{align*}
& \{A, B\}_{\mathrm{B}}=\left\{\frac{\partial A}{\partial \alpha^{*}} \frac{\partial B}{\partial \alpha}-\frac{\partial A}{\partial \alpha} \frac{\partial B}{\partial \alpha^{*}}\right\} \tag{29}\\
& \{A, B\}_{F}=\left\{\frac{\partial A}{\partial \bar{\theta}} \frac{\stackrel{\leftarrow}{\partial} B}{\partial \theta}-\frac{\partial A}{\partial \theta} \frac{\stackrel{\rightharpoonup}{\partial} B}{\partial \bar{\theta}}\right\} . \tag{30}
\end{align*}
$$

Note that $\partial / \partial \theta$ and $\overleftarrow{\partial} / \partial \theta$ are left and right derivative, respectively.
Finally, we wish to point out that all the above results are identical to those in [10], i.e., in the case of $S U(2)$ as $\theta, \bar{\theta} \rightarrow 0$. This is just what we require.

In this letter, we have presented a path-integral formalism for the supergroup $\operatorname{Osp}(1 \mid 2)$. The resulting equations of motion contain two Poisson brackets-one for the complex variable α and one for the Grassmann variable θ. The form of the equations of motion follows from the fact that the coherent states were constructed from a supergroup. The existence of the boson (fermion) Poisson bracket in the equations of motion for the bosonic (fermionic) variables is a direct consequence of the supergroup structure.

In our next work, we will apply our obtained results to a physical system possessing $\operatorname{Osp}(1 \mid 2)$ supersymmetry.

We would like to thank Professor Z Q Ma for helpful discussions and the anonymous referee for suggestions leading to the improvement of the letter.

References

[1] Feynman R P 1951 Phys. Rev. 84108
Feynman R P and Hibbs A R 1968 Mechanics and Path Intergrals (New York: McGraw-Hill)
[2] Klauder J R and Skigerstam B S (ed) 1985 Coherent States (Singapore: World Scientific)
[3] Glauber R 1963 Phys. Rev. 1302529
[4] Perelomov A M 1972 Commun. Math. Phys. 26 222; 1977 Sov. Phys.-Usp. 20703
[5] Gilmore R 1972 Ann. Phys. 74391
[6] Valles J W F 1981 J. Math. Phys. 221521
[7] Bars I and Günaydin M 1983 Commum. Math. Phys. 9131
[8] Balantekin A B, Schmitt H A and Barrett B R 1988 J. Math. Phys. 291634
Balantekin A B, Schmitt H A and Halse P 1989 J. Math Phys. 30274
[9] Klauder J P 1966 Ann. Phys. 11123
Schweber J J 1962 J. Math. Phys. 3831
[10] Kuratsuji H and Suzuki T 1980 d. Math. Phys, 21472
[11] Gerry C C and Silverman S 1982 J. Math. Phys, 231995
[12] Bohm M and Junker G 1989 J. Math. Phys. 301995
[13] Kuratsuji H 1988 Phys. Rev. Lett. 61 1687
[14] Schmitt H A, Halse P, Balantekin A B and Barrett B R 1988 Phys. Lett. 210B 1
Schmitt H A, Balantekin A B, Halse P and Barrett B R 1989 Phys. Rev. C 392419
[15] Buzano C, Rasetti M G and Rastello M L 1989 Phys. Rev. Lett. 62137
[16] Montorsi A, Rasetti M and Solomon A 1987 Phys. Rev. Lett. 592243
[17] Schmitt H A and Mufti A 1991 J. Phys. A: Math. Gen. 24 L815
[18] Scheunert M, Nahm W and Rittenberg V 1977 J. Math. Phys. 18155

[^0]: * This work was supported in part by the National Natural Science Foundation and the Doctoral Education Fund of the State Education Commission of China.
 § Mailing address.

